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Abstract: Analytical  investigation  of  onset  of  double  diffusive  convection  in  a  two  component  two  phase  system  under  
gravity  modulation  to  study  the  effects  of  salinity  gradient  and  temperature  gradient ; the  gradients  are  of  opposite nature  
employing  the  method  of  normal  mode  and  the  modified  perturbation  technique is presented. Analysis  is  carried  out  for  
Viscous , Brinkmann  and  Darcy  models  by  deriving  solvability  condition  and  computing  the  first  non – zero  correction  to the  
Rayleigh  number.  Possibility  of  enhancing  or  suppressing  convection  by  suitable  choice  of  the  governing  parameters  is  
studied. 

Indexterms :Boussinesq fluid saturated porous layer, double-diffussive convection, gravity modulation, modulation 
parameter,salinity parameter, stress-free boundaries,diffusivityratio,porous parameter, 

 
INTRODUCTION 

This  chapter  deals  with  the  analytical  investigation  of  the  
double-diffusive  phenomenon  in  a  gravity-modulated  
environment.  The  continuum  model  incorporates  all  the  
necessary  characteristic  features  /  properties  of  the  
medium.  The  system  is  a  two-component,  two-phase  
system  in  a  modulated  environment. The  two  gradients  of  
salinity  and  temperature  present  in  the  system  are  of  
opposing  nature 

We  employ  modified  perturbation  technique  and  carry  
out  analysis  for  Viscous,  Brinkmann  and  Darcy  models.  
Its  known  that  Double  diffusive  convection  exhibits  
several  interesting  features  in  an  unmodulated  
environment.  The  solvability  condition  is  derived  and  the  
first  non-zero  correction  to  the  Rayleigh  number  
computed. 

MATHEMATICAL  FORMULATION: 

The  physical  configuration  consists  of  a  Boussinesq  fluid  
saturated  porous  layer  of  infinite  horizontal  extent,  
subject  to  destabilizing  temperature  and  stabilizing  
concentration  gradients.  The  layer  is  confined  between  
two  plates  situated  at  z=0  and  z=d  respectievely.  Further,  
the  layer  is  under  the  influence  of  periodically  varying  

gravitational  field.  The  boundaries  are  assumed  to  be  
stress-free. 

Under  suitable assumptions  and  approximations,  the  
governing  equations  of  motion  are  : 

The  conservation  of  momentum 

ρ0 �
Dq��⃗
Dt
�=  -∇P + ρg�⃗ +  A1μ∇2q�⃗   -   A2

μ
k

q�⃗             (1) 

The  conservation  of  energy 

∂T
∂t

 +   (q�⃗  .∇ )T =   κ∇2T      (2) 

The  conservation  of  solute 

∂C
∂t

 +   (q�⃗  .∇ )C =   κs∇2C (3) 

The  equation  of  continuity 

∇ .  �⃗�𝑞 = 0  

    𝑎𝑎𝑎𝑎𝑎𝑎                                                                           (4) 

The  equation  of  state 

𝜌𝜌 =  𝜌𝜌0 [1 − 𝛼𝛼 (𝑇𝑇 − 𝑇𝑇0 ) + 𝛼𝛼𝑠𝑠(𝐶𝐶 − 𝐶𝐶0)]           (5) 

Where 

�⃗�𝑔 = 𝑔𝑔0 [1 +  𝜖𝜖 cos𝜔𝜔∗𝑡𝑡 ] 𝑘𝑘�  (6) 
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Nomenclature:     ( The  symbols  have  the  
following  meaning ) 

(x , y , z ) ,  the  space  variables ; 

�⃗�𝑞  = (𝑢𝑢 ,𝑣𝑣 ,𝑤𝑤 ),  the  velocity of  the  fluid  or  the  
mean  filter  velocity  of  the  fluid  layer  ( in  case  
of  a  porous  layer ) ; 

�⃗�𝑔 , 𝑡𝑡ℎ𝑒𝑒  gravitational  acceleration ; 

𝑔𝑔0 , 𝑡𝑡ℎ𝑒𝑒constant  part  of  gravity; 

t ,  the  time ; 

C ,  the  specific  heat ; 

𝑘𝑘� − 𝑡𝑡ℎ𝑒𝑒  𝑢𝑢𝑎𝑎𝑢𝑢𝑡𝑡  𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣  𝑢𝑢𝑎𝑎  𝑡𝑡ℎ𝑒𝑒  𝑧𝑧 − 𝑎𝑎𝑢𝑢𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡𝑢𝑢𝑣𝑣𝑎𝑎 ; 

k   -the  permeability  of  the  medium ; 

κ  
−  the  effective  thermal  conductivity  of  the  fluid  in   

the  presence  of  porous  medium 

T ,𝑇𝑇𝑏𝑏𝜃𝜃  - the  temperature ; 

C ,𝐶𝐶∗  - the  concentration ; 

𝜌𝜌 ,  𝜌𝜌0  -the  density  and  the  mean  density  of  the  
fluid ; 

μ   -the  dynamic  viscosity ; 

ν = μ  
 𝜌𝜌0

  - the  kinematicType equation here. viscosity ; 

𝜀𝜀∗ ,  𝜔𝜔∗, 𝑡𝑡∗  - the  dimensional  amplitude ,  
frequency  and  time ; 

d  -the layer thickness 

𝜅𝜅, 𝜅𝜅𝑠𝑠    -the thermal and solutal diffusivities 

P = ν
κ
– the Prandtl number 

R∗ = αg0(ΔT)d3

νκ
 − the thermal Rayleigh number 

 

Rs= αS g0(ΔC)d3

κν
– the solute Rayleigh number 

𝜏𝜏 = 𝜅𝜅𝑠𝑠
𝜅𝜅

 –the diffusivity ratio 

σ2 = d2

k
 – the porous parameter 

 

The basic state solution is𝑞𝑞� = (0,0,0),𝑇𝑇 =  𝑇𝑇𝑏𝑏(𝑧𝑧) 
and C = 𝐶𝐶𝑏𝑏(𝑧𝑧)where in there is a balance between 
the buoyancy force and the pressure. 

Introducing a small perturbation on the basic state 
so that  

𝑞𝑞�  =𝑞𝑞�,   𝑇𝑇 =  𝑇𝑇𝑏𝑏 + 𝜃𝜃,       𝐶𝐶 = Cb + 𝐶𝐶⋇   𝜌𝜌 = 𝜌𝜌𝑏𝑏 +
𝜌𝜌1  𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 = 𝑃𝑃𝑏𝑏 + 𝑃𝑃1               (7)         Where  𝑞𝑞�, 
𝜃𝜃,𝐶𝐶⋇,𝜌𝜌1  and𝑃𝑃1  represent small deviations from 
static state due to convective motion. Pressure is 
eliminated from the momentum equation and the 
resulting equations after non-dimensionalisation 
through an appropriate scale we have 

∇. q� =   0                                                      (8) 

( ∂
∂t
− ∇2)θ =ω                                           (9) 

( ∂
∂t
− τ∇2) C=ω           (10) 

(  P−1  ∂   
∂t

 -A1∇2 + A2σ2)∇2ω = ( 1+∈ cosωt )(R∇1 
2 -

RS∇2θ)       (11) 

Eliminating ω& c from the above equations we 
have 

(  P−1  ∂   
∂t

-A1∇2 + A2σ2) (∂   
∂t
− ∇2) (∂   

∂t
− τ∇2 )∇2θ     =

       ( 1+∈ cos𝜔𝜔𝑡𝑡) [ R∇1  
2   (∂   

∂t
− τ∇2)θ   -RS∇1 

2  (∂   
∂t
−

∇2) θ]        (12) 

which’s an eighth order differential equation in θ 
with the bouudary conditions in dimensionless 
form on velocity , temperature and concentration 
are : 

θ = C = 0at z =0 ,1 ;𝜔𝜔 =   0 =  𝑎𝑎
2𝜔𝜔
𝑎𝑎𝑧𝑧2    (13a,b) 

or 
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𝜃𝜃 = 𝑎𝑎2𝜃𝜃
𝑎𝑎𝑧𝑧 2 =𝑎𝑎

4𝜃𝜃
𝑎𝑎𝑧𝑧 4 = 𝑎𝑎6𝜃𝜃

𝑎𝑎𝑧𝑧 6 =0(14)

STABILITY ANALYSIS : 

Linear stability analysis of double-diffusive  
porous convection is performed under a 
modulated environment using an asymptotic 
procedure.The critical conditions for the three 
models of viscous, Brinkman and darcy are 
computed.Mathematical and physical validity of 
the solutions are discussed. 
In view of  ∈< 1, we consider the asymptotic 
expansion in powers of ∈, for variables R and θ as 
 (R, ,𝐶𝐶) = ( 𝑅𝑅0,𝜃𝜃0,𝐶𝐶0 )  + (𝑅𝑅1,𝜃𝜃1,𝐶𝐶1)  + ∈2 ( 𝑅𝑅2,𝜃𝜃2,𝐶𝐶2 ) + ……(15)  
Substituting (15) into (12) we obtain the following 
set of differential equations corresponding to ) ∈0, 
∈  and ∈2 : 
L θ0= 0      (16) 

Lθ1= [(fR0+R1) (∂   
∂t

 -  τ∇2)- R S(∂   
∂t
−  ∇2) f] 

∇1 
2 θ                  (17) 

Lθ2=∇1 
2 [(∂   

∂t
− τ∇2) {(fR0+R1) θ1 +(fR1+R2) θ0} -- 

R S(∂   
∂t
−  ∇2) f θ1](18) 

Where 

L = ( ∂   
∂t
− A1∇2 + σ2A2 )∇2 ( ∂   

∂t
− τ∇2) (∂   

∂t
−  ∇2) - 

R 0∇2( ∂   
∂t
−  τ∇2)+R S∇1 

2 ( ∂   
∂t
−  ∇2)(19) 

Applying normal mode analysis, solution of (  ) is 
obtained. On letting  θ0

𝑎𝑎  = 
sinn𝜋𝜋𝑧𝑧 𝑢𝑢𝑎𝑎 (19),𝑤𝑤𝑒𝑒 𝑔𝑔𝑒𝑒𝑡𝑡 𝑣𝑣𝑎𝑎 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢𝑣𝑣𝑎𝑎𝑡𝑡𝑢𝑢𝑣𝑣𝑎𝑎 
 L = A1(n2π2 + a2) + σ2A2} ((n2π2 + a2)3 + 
R S(n2π2 + a2) = R 0a2 τ(n2π2 + a2)(20) 
Or 

R 0 =   (A1
�n2π2+a2�3

a2 ) +(A2σ2 �n2π2+a2�2

a2  +𝑅𝑅𝑠𝑠
τ

)(21) 

The least eigen value for a fixed wave number 
occurs at n =1. 

We now discuss the following three cases : 
 
Case (1) Fluid Layer :A1 = 1, A2 = 0.   

From (21) we obtain R 0 =   �n2π2+a2�3

a2  + Rs
τ

(22) 

In the absence of concentration gradient (i.e. 
R S = 0) above equation exactly coincides with that 
of the classical Benard problem. 

Now,  𝑎𝑎𝑅𝑅 0
𝑎𝑎𝑎𝑎2 = 0 →𝑎𝑎𝑣𝑣  = 𝜋𝜋

√2
 andRoc = 27π4

a2  + Rs
τ

(23𝑎𝑎, 𝑏𝑏) 

 
Case (2) Darcy model :A1 = 0, , A2 = 1 
For a densely packed two-component fluid 
saturated porous layer, we obtain from (  ) : 

. 𝑅𝑅 0 = 𝜎𝜎2 �𝜋𝜋2+𝑎𝑎2�2

𝑎𝑎2 + Rs
τ

(24) 

Now, 𝑎𝑎𝑅𝑅 0
𝑎𝑎𝑎𝑎2 = 0 →ac  =π andRoc  = 4π2σ2(25a,b) 

 
Case (3) :Brinkmann model :: A1 = 1 =  A2 
For a sparsely packed double diffusive porous 
layer, we obtain from (1.1.22) : 

𝑅𝑅 0 = (𝜋𝜋2 + 𝑎𝑎2 + 𝜎𝜎 2)
(𝜋𝜋2 + 𝑎𝑎2)2

𝑎𝑎2 +
𝑅𝑅𝑠𝑠
𝜏𝜏

(26) 

Again, ,𝑎𝑎𝑅𝑅 0
𝑎𝑎𝑎𝑎2 = 0→ac

2 = 1
4

 [(9π4 + 10σ2π2 + σ4)
1
2 −

(π2 + σ 2)] 
Convection is possible only when(9𝜋𝜋4 + 10𝜎𝜎2𝜋𝜋2 +
𝜎𝜎412>𝜋𝜋2+𝜎𝜎 22(27) 

This condition always holds since(𝜋𝜋2 + 𝜎𝜎 2) >
0    (28) 

 
HIGHER ORDER SOLUTIONS : 
 
We now consider the first and second order system 
of differential equations are considered and the 
solutions are computed.  
From (17)  Lθ1

(n) =  -a2[(fR 0 + R 1)τ(n2π2 + a2) −
R sf(n2π2 + a2)]θ0

(n)(29) 
𝑅𝑅 1 ,𝑅𝑅 3 vanish due to orthogonality condition.We 
can write 

L(ω, n) =P−1ω2[(1+ τ)(n2π2 + a2)2] + [{A1(n2π2 +
a2) + A2σ 2}{ω2 −  τ)(n2π2 + a2)2}(n2π2 + a2) + 
τ(n2π2 + a2) {A1(π2 + a2)3+A2σ 2(π2 + a2)2+R s

 τ
a2} - 

R sa2(n2π2 + a2)] +i ω [(n2π2 + a2){-P−1ω2 +
τP−1(n2π2 + a2)2} +(1+ τ) (n2π2 + a2)2(A1(n2π2 +
a2) + A2σ 2) − {A1(n2π2 + a2)3 + σ 2A2)(n2π2 +
a2)2 + R s

 τ
a2 } + R sa2]    (30) 
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Thus L(ω, n) =  ω2Xn + Yn + i ωZn
1
2 where Xn  = 

(1+ ) P−1N1
2(31a,b) 

Yn = A1τ (N2
3 − N1

3)N1+A2σ 2τ (N2
2 − N1

2)N1 +
ω2N1N3(31c) 

Zn
1
2=[N1

2N3 + A1 (τN1
3 − N2

3) + A2σ 2(τN1
2 − N2

2) 
+R sa2  τ−1

 τ
 +P−1𝑁𝑁1(τN1

2-ω2)](31d) 

𝑁𝑁1 =  (𝑎𝑎2𝜋𝜋2 + 𝑎𝑎2),𝑁𝑁2 =  (𝜋𝜋2 + 𝑎𝑎2), 𝑁𝑁3 =
(𝐴𝐴1𝑁𝑁1 + 𝐴𝐴2𝜎𝜎 2)   (31𝑒𝑒,𝑠𝑠,𝑔𝑔) 
Letting- R s  → 0, τ → 0, we find that 
Xn= P−1N1

2,  Yn = A1 +A2σ 2(N2
2 − N1

2)N1 + ω2N1N3, 
(32a,b) 

Zn
1
2=[N1

2N3 − A1N2
3 − N2

2+A2σ 2 −+P−1𝑁𝑁1ω2.(32c) 
Further it follows that  L(sinnπz𝑒𝑒−𝑢𝑢𝜔𝜔𝑡𝑡 ) 
=L(ω, n)(sinnπz𝑒𝑒−𝑢𝑢𝜔𝜔𝑡𝑡 )    (33) 
From (29), (31), (33), we obtain 

θ1
(n) =-a2(n2π2 + a2)(R 0τ-R s) 𝑅𝑅𝑒𝑒[ ∑ 𝑒𝑒−𝑢𝑢𝜔𝜔𝑡𝑡 )( 𝑠𝑠𝑢𝑢𝑎𝑎𝑎𝑎𝜋𝜋𝑧𝑧

𝐿𝐿(𝜔𝜔 ,𝑎𝑎)
 ](34) 

Lθ2
(n) =-a2(n2π2 + a2){𝜏𝜏(𝑠𝑠R 0𝜃𝜃1 + 𝑅𝑅2𝜃𝜃0) −

𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎2𝜋𝜋2+𝑎𝑎2)𝜃𝜃1}(35) 
We derive the solvability condition by applying 
the condition that the RHS of (34) is orthogonal 
tosinπz.Thus  

R 2τ(n2π2 + a2)∫ sin2 πz dz = (n2π2 + a2)1
0 (R 0τ-

R s)∫ 𝑠𝑠θ1�����1
0 sinπz dz               (36) 

Or 

R 2 =  −2(R 0-R s
 τ 

)∫ 𝑠𝑠θ1�����1
0 sinπz dz      (37) 

Let’s computeθ1Lθ1�������� = - a2(R 0 τ-R s)(n2π2 +
a2fθ1sinπz            (38) 

fθ1����sinπz = θ1Lθ1���������

(R 0 τ−R s ) τ (n2π2+a2)
       (39) 

 
But from (34), we have 

θ1Lθ1�������� =(R 0 τ − R s) 2a4Re [ (n2π2 + a2)[ ∑ e−iω t  sinn πz

L(ω ,n)
 

]         (40) 
Hence we have 
R 2 =
  2 (R 0 τ−R s ) 2�n2π2+a2�

τ
∑ cos 2 ωt (ω2Xn +Yn )

(ω2Xn +Yn ) 2+ω2Zn
∫ sin2 πz1

0  dz      

(41) 

Or    R 2 = (R 0 τ−R s ) 2�n2π2+a2�
2τ

∑ (ω2Xn +Yn )
(ω2Xn +Yn ) 2+ω2Zn

     

(42) 
Results are presented through graphs. 

 
RESULTS AND DISCUSSION : 
In this section, the results are discussed. In figures 
1.1 to 1.11, the graphs of  R2

R0
versus𝜔𝜔 is presented 

for different values of the salinity gradient, 
diffusivity ratio,,porous parameter and the Prandl 
number. The results correspond to the 
fluid/viscous and Brinkman models. The effect of 
frequency modulation is studied  in the range 
0< 𝜔𝜔 < 100  𝑇𝑇ℎ𝑒𝑒 𝑣𝑣𝑒𝑒𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑠𝑠 𝑠𝑠𝑣𝑣𝑒𝑒𝑎𝑎𝑢𝑢𝑣𝑣𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑤𝑤𝑢𝑢𝑎𝑎𝑔𝑔. 
(1) The graphs present in figures 1.1 to 1.3 
correspond to the viscous /fluid model.From figure 
1.1 it is clear that  instability is more in the range 
20< 𝜔𝜔 <40whereas for other values of 𝜔𝜔, the 
motion is more of supercritical nature and the 
maximum positive correction to R 0 occurs for 
𝜔𝜔 ≈ 0 which corresponds to the unmodulated 
case.Here R s=10 and τ = 0.1. 

 
(2) As R stakes the values 100 and 1000, the 
behavioural pattern also changes drastically.For 

R s = 103 and τ = 0.1, the system becomes highly 
unstable (to subcritical motions) for all values of P 
in the range 0< 𝜔𝜔 <20 

 
(3) From figures 1.4 and 1.5 it is apparent that for 

small Prandtl numbers, the salinity gradient 
has a remarkable influence on the behavioural 
pattern. There is a drastic difference in the 
values of the ratio for  R s  =10, 100.It is 
observed that for very small values of the 
frequency modulation parameter the ratio 
takes large values.In other words, the first 
order correction to the Rayleigh number is 
sufficiently small in the case of gravity-
modulated environmentwhen compared to 
values in the unmodulated 
environment.Therefore, by the suitable choice 
of governing parameters it is possible to 
enhance or suppress convection. 

 
(1) In figures 1.6 to 1.11 the graphs are drawn 

for 𝜎𝜎 = 10, 25, 40;𝑎𝑎𝑎𝑎𝑎𝑎 for  R s =
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10, 103.One important                                      
thing observed in these figures is, the 
graph has the same profile in the range 
20≤ 𝜔𝜔 ≤ 40, whatever may be the 
combination of parameters. It is found that 

for large values of 𝜎𝜎 ≥ (25)all the curves 
merge and the effect of Prandtl number 
becomes insignificant. 
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